Hardness result for the total rainbow k -connection of graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total rainbow k-connection in graphs

Let k be a positive integer and G be a k-connected graph. In 2009, Chartrand, Johns, McKeon, and Zhang introduced the rainbow k-connection number rck(G) of G. An edge-coloured path is rainbow if its edges have distinct colours. Then, rck(G) is the minimum number of colours required to colour the edges of G so that any two vertices of G are connected by k internally vertex-disjoint rainbow paths...

متن کامل

Total $k$-Rainbow domination numbers in graphs

Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...

متن کامل

Rainbow k-connection in Dense Graphs

An edge-coloured path is rainbow if the colours of its edges are distinct. For a positive integer k, an edge-colouring of a graph G is rainbow k-connected if any two vertices of G are connected by k internally vertex-disjoint rainbow paths. The rainbow k-connection number rck(G) is defined to be the minimum integer t such that there exists an edge-colouring of G with t colours which is rainbow ...

متن کامل

Hardness and algorithms for rainbow connection

An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection of a connected graph G, denoted rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In the first result of this paper we prove that computing rc(G) is NP-Hard solving an open problem from [6]. In fact, we prov...

متن کامل

Further hardness results on the rainbow vertex-connection number of graphs

A vertex-colored graph G is rainbow vertex-connected if any pair of vertices in G are connected by a path whose internal vertices have distinct colors, which was introduced by Krivelevich and Yuster. The rainbow vertex-connection number of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. In a previous paper we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2017

ISSN: 0096-3003

DOI: 10.1016/j.amc.2017.01.068